Bounds on the Number of Units for Computing Arbitrary Dichotomies by Multilayer Perceptrons
نویسندگان
چکیده
منابع مشابه
Bounds on the number of hidden neurons in multilayer perceptrons
Fundamental issues concerning the capability of multilayer perceptrons with one hidden layer are investigated. The studies are focused on realizations of functions which map from a finite subset of E(n) into E(d). Real-valued and binary-valued functions are considered. In particular, a least upper bound is derived for the number of hidden neurons needed to realize an arbitrary function which ma...
متن کاملstudy of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
Some lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملFunctional preprocessing for multilayer perceptrons
In many applications, high dimensional input data can be considered as sampled functions. We show in this paper how to use this prior knowledge to implement functional preprocessings that allow to consistently reduce the dimension of the data even when they have missing values. Preprocessed functions are then handled by a numerical MLP which approximates the theoretical functional MLP. A succes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 1994
ISSN: 0885-064X
DOI: 10.1006/jcom.1994.1002